EFFECTS OF COMPRESSIBILITY AND NONISOTHERMAL
CONDITIONS ON THE PERFORMANCE OF
FILM COOLING
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The equations for a turbulent boundary layer are transformed in order to analyze the effects
of compressibility and nonisothermal conditions on the performance of film cooling,

One way of examining the effects of compressibility and nonisothermal conditions near a wall is to
transform the equations for the behavior of a fast compressible boundary layer to corresponding equations
for a low-speed boundary layer, and, in particular, to equations for a liquid with constant physical proper-
ties [1-3]. These transformations are called respectively the [ transformation and the i transformation;
they are used below for the case of a fast compressible turbulent boundary layer on a planar adiabatic plate
beyond a region of injection of gaseous coolant (film cooling) [4].

A bar above a quantity refers to the low-speed flow; then the symbols of [3] are used to give the fol -
lowing form to the transformation scheme in the general case, The equations
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describe the behavior of the fast layer and become as follows with suitable choice of the scale functions for
the transformation
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and when all the quantities appearing in the equation are transformed to the corresponding quantities for
the low-speed layer,
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It has been assumed in writing these equations that all the diffusion coefficients are equal and that the Lewis
number is equal to 1,

It has been shown [2] that dependence of the first three functions in (5) only on the x coordinate is a
sufficient condition for the convective terms in (2) to describe the behavior of a boundary layer on a planar
plate after substitution of the corresponding quantities for the low-speed layer, and the same applies to
the convective terms in {2a), It can be shown that the scale functions H and M should be constants if analog-
ous requirements are to be met by the convective terms in (3), {3a), (4), and (4a); in fact, from (1) and (1a)
we have that
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We substitute (7) in the left part of (3) and use the expression for H to get
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where J(H™1, y) = o(H™, ¥) /a(x y) is a Jacobian, If the distance from the plate is much greater than the
thickness of the boundary layer |y, y > §, 5|, the left part of (8) and the first term on the right become
zero, in accordance with {3) and (3a). The third and fourth terms on the right become zere by virtue of the
behavior of ¥ and $(3h/5y), while the second and last terms are different from zero, with the last tending

to infinity on account of y. The simplest condition that provides zero for the last term is oH™ /oy = 0, while
for the second it is H = const, which has been assumed [3]. Analogous arguments may be applied also to

M = const,-

As 0(x), n(X), &), H = const and M = const, we may express all the quantities for the high-speed case
via the scale functions and the corresponding quantities for the low-speed one, eliminating quantities 7, q,
and m;, since there are no mathematical formulas for the variations in these across the layer when the
boundary layer is turbulent. The law of transformation of the pressure follows from the equation
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while we get the following equations [3] for the displacement thickness, and also for the thicknesses for loss
of momentum, energy, and mass of the component i:
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We make the above substitution into (1)-(4) and compare the results with (1a)-(4a), which enables us
to put the condition for transformation of the first to the second in the form
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The scale functions of (5) should be chosen so as to meet the conditions of (11)-(13), which are un-
doubtedly satisfied at the edge of the boundary layer because of the law chosen for transformation of the
pressure and of the choice of the scale functions, Equations (11)-(13) may be put as follows as regards the
conditiong at the wall:

8

_ ) [
%—w=~§;—{rw+(peuee+¢w)uedlm—peu§[6*+6—g'(1—?9)@} nm/ﬁ) dﬁg( p"’p)} (14)

dx PO x
- oH dl
="y {qw+(peueq>+¢w)(h° h,) m], (15)
—~ oM [ - din
™ T [ miw + (peuegi + "‘Pw) (mie - miw) g ] (16)
dx
and may be supplemented by the equations
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which are derived on the assumption that laminar viscosity, laminar heat transfer, and laminar mass trans-
fer occur at the wall. Here we may note that obedience to (14)-(17) is equivalent to transformation of the
integral equations for the boundary layer [3] even in those cases where v = 0, hg # const and mj, = const,

However, obedience to (14)-(17) does not guarantee that the transform will provide the actual existing
variation in the tangential stress 1, the density of the heat flux q, and the flux density fﬁi for the mass of
component i across the boundary layer., If we assume that we have in the turbulent part of the boundary
layer a mechanism for mass and energy transport such as to meet the generalized analogy, then for both
fluxes we have
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Here (18) and (19) define the effective Prandil number Pry and Schmidt number Sci, with Pry — Pry, and
Scy — Scy, near the wall; we transform the second equation in (18) via (5) and compare with (11) and
{12) to get via the first equation in (18) that
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Similar operations with (11), (13), and (19) give
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Equations (20) and (21) are undoubtedly met near the wall, while system (14)-(17), (20), (21) enables one to
find the scale functions ¢, n and £ in this case.
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Consider the flow of a fast compressible gas near an impermeable adiabatic planner plate (yyw = myy,
= gy = 0); if the scale functions nowhere become zero, we have from (17) that the corresponding low-speed
flow will also pass along an impermeable adiabatic wall (Jy = thjy, = EW = 0). The injected gas differs in
nature or temperature from that in the main flow, so in at least one of (15) and (16) the light part is not
identically zero, and consequently, these equations can be met only for ¢ = const, * Since (20) and {21) are
obeyed by the gradient free flow (dp/dx =_0)_ifn/a = const and Pry = _P—rt =1, then flow at a low speed will
correspondingly also have no gradient (dp/dx = 0), and analogous results are obtained if at the wall we have
strong injections such that iy > 0, (9Mi/8Yy)y, = (0h/a¥)y, = 0.

This shows that the low-speed and high-speed flows have similar distributions in the current funciions,
projections of the velocity on the x axis, total enthalpy, and concentration. The last means, in particular,
that the dimensionless enthalpy at the wall is the same in corresponding sections, i.e,,

Nef (1) = Mes (%), (22)
where
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represent the effectiveness of film cooling of the wall {4, 6}, while X, and §0 are respectively the initial
sections in which the profiles of these quantities are similar,
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The edges of the slit for porous strip in front of the adiabatic wall (Fig. 1) define the similar sections
and one can always state a current line passing through these edges, so ¢ should be defined by the ratio of
the mass flow rates of the injected gas in the low-speed and high-speed cases, Then we can find the values
of the scale functions of (5) on the transformation for an adiabatic plate in correspondence with (6), (14), and
(17) as follows: '
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if dp/dx = 0 and Pry = Sc = Prt = Sct = 1. Hereall the scale functions, apart from ¢, are constants, while
the relation between the coordinates at the corresponding points is found from (5a) as
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We write the second equation in (7) via {5a) for the conditions at the wall:
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This equation is always met for an impermeable wall w = uw = V4 = 0; if the wall has strong injection at
a constant temperature (dw = 0, h%v = const), then the derivative on the right in (7a) is zero, while the equa-

tion becomes

Oplty) _ (Oultd) _ Oy (Tb)
This shows that the condition o uw/ﬁw =1 is compatible with the condition for similarity in the velocity dis-
tributions (u and v) near the wall for strong injection. In what follows we assume that
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*In [2] the discussion concerned the case ¢ = var for mj = const and h? = const.
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Fig, 1, Scheme of secondary gas supply to the main stream:
a) tangential injection; b) injection at an angle; c¢) injection
normal to the surface.

We integrate the first equation in (23) fo relate the corresponding sections in the low-speed case
(x = const) and the high-speed case (x = const), at which we have equality of the effective film cooling rates
as defined by (22). Equations (5a) and (7c) in principle solve the problem for the injection of a gaseous
coolant if these equations are supplemented with ones defining the physical properties of the gas mixture,

for example, those of [5];
1 —0,5 0,
g vt Bm). a0

W, = AiTl’s/(T + B;) (Sutherland's formula) 25)
and

0, =p;(p, T) (equation of state). (26)

As an example we consider an air flow with injected cooling air, Here we need transform only the
equations for continuity, motion, and energy, while in place of (24) we use the following equation [5]:
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If the low-speed flow is also of air ( transformation) then we use (5a), (7c), (23), and (27) to get
X—xo 0,343, X—Xp E—1 0383 y__x
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which implies that the performance in the high-speed flow will be higher than that in the low-speed one for
the same dimensionless distance from the injection point. Equation (28) demonstrates the effect of the com~
pressibility on the relation between the related sections in the two flows,

If the low-speed flow is that of a liquid with constant physical properties (i transformation), then we
use (ba), (7c), (23), and (27) to get

{x/s}

s Daldy s
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On the other hand, from (10), (23), (25), and (27) and the approximating equation for the performance of the
film cooling [6]

ﬁef,n(;) = Cn ( x~;_x0_) ’ ’ (30)
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we get relationships for the converse:
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where £(x) = [1—hyq (%,)/helflef is a function of the coordinate X, and X, is the coordinate corresponding to
the x, at which (30) begins to'apply; also, N = 1/n-0.343 is an integer greater than zero and C'Ir\?_l isa
binomial coefficient. We wish to know the performance in film cooling with a liquid as a function of the
distance from the injection point, which we approximate via parts of curves of the form of (30) with powers
n(n < 1), and then we use (31) and (31a) to define the coordinates of the low-speed flow in relation to the
coordinates of the high-speed one successively in accordance with the selected parts. HereTle/ue and H

should be chosen, while ¢ and n should be obtained by calculation,

Equation (29) differs from (28) in incorporating not only the effects of compressibility but those also
of nonisothermal conditions on the performance; the effects of the latter can be seen by putting Ao and A,
equal to zero, when (29) shows that directly at the point of injection py uw/paus ~ 1, and the dimensionless
coordinates along the abscissa axis are virtually the same for the low-speed and high-speed cases, Far
from the point of injection we have pyuyw/pote & pelie/poptz greater or less than unity in dependence on
whether the injected gas is hotter or colder. In the first case, the performance decreases, while in the
second case it increases relative to the performance of a flow of liquid with constant physical properties.

Petrov [7] has given experimental results on the performance of film cooling beyond a tangential slot
on injecting nitrogen into an air flow along a planar plate when the velocity is supersonic (A, = 1.48). His
experimental results were in almost complete agreement with the efficiency as calculated for low-speed
flows and used in such a way that u = u and Re, ~ Re,. This agrees completely with our deductions, since,
in this case, A, = 0.5, and from (28) we get 0.985 = (x- x¢/8)/(x— x)/s) =< 1.

Borodachev [8] has given experimental results on the performance of film cooling behind a tangential
slot when injecting air into an air flow (u; =~ ue), where Ag and A, did not exceed 0.5, while the temperature
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change in the boundary layer was + 310°, The ratio pypiy,/pou, was deduced from the temperature of the
adiabatic walls, and the integral on the right in (29) was calculated to relate the coordinates along the
abscigsa axis for the low-speed and high-speed cases. Figure 2 shows the observed performance given in
[8], and also the experimental results converted via (22) and (29), together with the theoretical performance
from the data of [9], the theoretical calculation incorporating the assumption that dynamic boundary layers
with injected material are closed at the exit from the slot, while the nomimal origin of the dynamic boundary
layer at the wall is taken relative to the slot position such that the dimensionless current function £yp;

= Pwbl/p is equal to &,y = 0.5Re,, thus characterizing the flow in the dynamic boundary layer near the wall
at the slot section, It is clear from the results that the nonisothermal boundary layer in this case has little
effect on the performance of the film cooling, and the latter can be calculated quite accurately via the equa-
tions for the performance of film cooling with a quasiisothermal flow [10],

The equation transformation method of [1-3] can be used to take into account compressibility and
nonisothermal conditions as regards the performance of film cooling, These effects can be neglected over
a comparatively wide range in velocity and temperature if one retains certain definite conditions for com-
paring the high-speed and low-gspeed flows.

NOTATION
X, ¥ are rectangular coordinates of which the abscissa coincides with the surface of the
flat plate and the direction of the undisturbed flow;
8 is a characteristic dimension (height of slot, length of porous section);
P is the density;
7 is the viscosity;
] is the flow function;
Ewbl is the dimensionless flow function;
u, v are the projections of the velocity vector on the x and y axes, respectively;
p is the pressure;
T is the temperature;
h is the enthalpy;
Cp is the specific heat at constant pressure;
k is the isoentropic component
A is the velocity coefficient, the ratio of the flow velocity to the eritical velocity;
m; is the mass flow density of the i-th component;
M; is the molecular weight of the i~th component;
M, is the mass flow rate of gas per unit width of flow;
T is the shear stress;
q is the heat flux density;
o, & H, M are scale functions;
[+
6, 0% = \ (1— pp:; ) dy, are respectively the thickness, thickness of displacement;
h ete

o]
o= | pp; (1— ui) dy, is the momentum thickness;

H e*e e

Oa LI
P = Y o - dy, is the energy thickness;

d Pette fy— P

[ P

Q= 5 ppu,, . m;_ml_ dy  is the mass thickness of the i-th component of the boundary layer;

0 4 w
Rey = My /uy is the Reynolds number;
Pr is the Prandtl number;
Sc is the Schmidt number;
Ai, Bi, Ch, N, n are constants,
Subscripts
0 denotes total parameters;
e denotes undisturbed flow;
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2 denotes injected flow;
denotes wall;

wa denotes adiabatic wall;
i denotes the i-th component of the gas mixture;
ef denotes effective;

wbl denotes well boundary layer,
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