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The equations for a turbulent boundary layer  are  t rans formed  in order  to analyze the effects 
of compress ib i l i ty  and nonisothermal  conditions on the per formance  of film cooling. 

One way of examining the effects of compress ib i l i ty  and nonisothermal conditions near  a wall is to 
t r ans fo rm the equations for  the behavior of a fas t  compress ib le  boundary layer  to corresponding equations 
for  a low-speed boundary layer ,  and, in par t icular ,  to equations for  a liquid with constant physical p rope r -  
t ies  [1-3]. These t ransformat ions  a re  called respect ive ly  the I t ransformat ion  and the i t ransformat ion;  
they are  used below for  the case  of a fast  compress ib le  turbulent boundary layer  on a planar adiabatic plate 
beyond a region of injection of gaseous coolant (film cooling) [4]. 

A bar  above a quantity r e fe r s  to the. low-speed flow; then the symbols of [3] are  used to give the fo l -  
lowing fo rm to the t ransformat ion  scheme in the general case .  The equations 
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descr ibe  the behavior of the fast  l ayer  and become as follows with suitable choice of the scale  functions for 
the t ransformat ion  

,~ ~ ~ (x_ y) p oy Ox ~- m, 
~(x, y) ' n=- p Oy ~ b T '  H -  - U  and~Vt~ - -  (5) 7 /T/i  

and when all the quantities appearing in the equation are  t r ans fo rmed  to the corresponding quantities for  
the low-speed layer ,  
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It has been assumed in writ ing these  equations that all the diffusion coefficients a re  equM and that the Lewis  
number  is equal to 1. 

It has been shown [2] that dependence of the f i r s t  th ree  functions in (5) only on the x coordinate  is a 
sufficient condition for  the convective t e rms  in (2) to descr ibe  the behavior  of a boundary l aye r  on a planar 
plate af ter  substitution of the corresponding quantities fo r  the low-speed l ay e r ,  and the same applies to 
the convective t e rms  in (2a). It can be shown that the scale  functions H and M should be constants ff analog- 
ous requ i rements  a re  to be 'met by the convect ive t e r m s  in (35, (3a), (4), and (4a); in fact ,  f r o m  (15 and (la) 
we have that 

o__= u _  ue, (6) 
~l u u e 

1 - -  Og 1 ( - -  0g) d lna  (7) 

We substi tute (7) in the lef t  par t  of (3) and use the express ion  for  H to get 

Oh o Oh ~ ( Oh - - ~ )  p ~,l +ul~ p j(H_I,-~) 

_~ OH -~ _=. Oh p ~ dln~ + ~  1 OH -~ d l n ~  (8) 
" -;" 0-T e x  

where  J(H -1, y) -- 8(tt -1, y-)/8(x, y) is a Jaeobian.  If the distance f rom the plate is much g rea t e r  than the 
thickness of the boundary l aye r  lY, Y >> ~, ~1, the left  par t  of (8) and the f i r s t  t e r m  on the r ight  become 
zero ,  in accordance with (35 and (3a5. The th i rd  and fourth t e r m s  on the r ight  become zero  by v i r tue  of the 
behavior  of u and ~)(Sh/0y), while the second and las t  t e r m s  are  different  f r o m  zero ,  with the las t  tending 
to infinity on account of y. The s implest  condition that provides zero  for  the las t  t e r m  is 8I-I-I/Sy = 0, whiIe 
for  the second it is H = const ,  which has been assumed [3]. Analogous arguments  may  be applied also to 
M = e o n s t .  

As cr(x), ml(x), }(x), H = const and M = const,  we may  express  all the quantities fo r  the high-speed case  
via the scale  functions and the corresponding quantities for  the low-speed one, eliminating quantities ~, q, 
and mi,  since the re  a re  no mathematical  formulas  fo r  the variat ions in these  ac ross  the l aye r  when the 
boundary l aye r  is turbulent .  The law of t ransformat ion  of the p r e s s u r e  follows f ro m  the equation 

d--~ = ~,1 ~ " p~ dxx § p~u~ ~-x In , (9) 

while we get the following equations [3] for the displacement thickness, and also for the thicknesses for loss 
of momentum, energy, and mass of the component i: 

6 

P~ pp# 
0 (10) 

0]0 = ~/tp = ~ / ~  = 71Pe/Pe, h/h~ = h~176 H m~/mz~ = m/m~,o . 

We make the above substitution into (1)-(4) and compare  the resu l t s  with (la)-(4a),  which enables us 
to put the condition for  t ransformat ion  of the f i r s t  to the second in the fo rm 

6 8 6 
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The s c a l e  funct ions  of (5) should be chosen  so  as to m e e t  the  condi t ions  of (11)-(13), which a r e  un-  
doubtedly  sa t i s f ied  at the edge of the b o u n d a r y  l a y e r  b e c a u s e  of the  law chosen  f o r  t r a n s f o r m a t i o n  of the  
p r e s s u r e  and of the  cho ice  of the  s c a l e  func t ions .  Equat ions  (11)-(13) m a y  be put as fol lows as r e g a r d s  the  
condi t ions  at the wal l :  

6 6 

(14) 
dx POe I dx PO~ I 

0 0 

q w = ~ -  qw-l-(PJ~qD+*~)(h~ dlno ] (15) 
dx J '  

-= o'M [ �9 dln~ ] 
mi~-  ~ k mi~ + (pelge~qi ~- ~W) (mi~ --  mi~) dx J (16) 

and m a y  be  supp lemented  by the equat ions 

T-~ 9~bt~ a - 9~ ~tw Pr~ H 
* - -  - -  " " - -  q w  

P ~  ~1 ~ ~ '  q ~ =  P~GPr~  ~1 

and (17) 
m~," = 9~p~Sc~ .M - 

sc-; 7 
which a r e  de r ived  on the  a s sumpt ion  that  l a m i n a r  v i scos i ty ,  l a m i n a r  hea t  t r a n s f e r ,  and l a m i n a r  m a s s  t r a n s -  
f e r  occu r  at the wal l .  H e r e  we m a y  note  tha t  obedience  to  (14)-(17) is equivalent  to t r a n s f o r m a t i o n  of the 
in tegra l  equat ions f o r  the boundary  l a y e r  [3] even in those  c a s e s  whe re  #~w ~ 0, hOe # cons t  and mie  ~ cons t .  

H o w e v e r ,  obedience  to  (14)-(17) does not gua ran t ee  that  the  t r a n s f o r m  will p rov ide  the actual  exis t ing 
va r i a t ion  in the  tangent ia l  s t r e s s  7 ,  the  dens i ty  of the  hea t  f lux q, and the  f lux dens i ty  ~ i  f o r  the  m a s s  of 
componen t  i a c r o s s  the  b o u n d a r y  l a y e r .  If we a s s u m e  that  we have  in the tu rbu len t  p a r t  of the boundary  
l a y e r  a m e c h a n i s m  fo r  m a s s  and e n e r g y  t r a n s p o r t  such as to m e e t  the gene ra l i z ed  analogy,  then fo r  both 
f luxes  we have  

and 

q 1(ah/ay)  l [ (aho/ay)  ] # 1 (ah-/a}) 
. . . .  u . . . . . .  (18) 

Ph (aul@) Pr, (aul@) �9 pr, (ou/ay) 

m~ = 1 (am/ay) ;n, _ 1 .  (amd@) 
so, (au/@) ' ~ Sct (au-/ay-) " (19) 

H e r e  (18) and (19) define the  ef fec t ive  Prandt l  n u m b e r  P r  t and Schmidt  n u m b e r  Sct,  with P r t  ~ P r  w, and 
Sct -~ Scw n e a r  the wall ;  we t r a n s f o r m  the second equat ion in (18) v ia  (5) and c o m p a r e  with (11) and 
(12) to  get  v ia  the f i r s t  equat ion in (18) tha t  

6 6 

Y y 

-I)  l OhO 
(aho/@) J dx (&o/ay) -~y 

Y Y 

Similar operations with (II), (13), and (19) give 
6 6 

g Y 

6 

+ 1 -  = s c - :  + - -  (21)  PPe/ dx (OmjOy) Oy 
Y Y 

Equat ions  (20) and (21) a r e  undoubtedly  me t  n e a r  the wall ,  while s y s t e m  (14)-(17), (20), (21) enables  one to  
f ind the  s ca l e  funct ions  G, ~ and ~ in this  c a s e .  
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C o n s i d e r  t h e  f low of a f a s t  c o m p r e s s i b l e  gas  n e a r  an i m p e r m e a b l e  a d i a b a t i c  p l a n n e r  p l a t e  (z]~w = m i  w 
= qw = 0); if t h e  s c a l e  func t ions  n o w h e r e  b e c o m e  z e r o ,  we  h a v e  f r o m  (17) t ha t  the  c o r r e s p o n d i n g  l o w - s p e e d  
f low wi l l  a l s o  p a s s  a long  an i m p e r m e a b l e  a d i a b a t i c  wal l  (~!Jw = m i w  = qw = 0). The  i n j e c t e d  gas  d i f f e r s  in 
n a t u r e  o r  t e m p e r a t u r e  f r o m  tha t  in t he  m a i n  f low,  so  in at  l e a s t  one of (15) and (16) the  l i gh t  p a r t  is  not  
i d e n t i c a l l y  z e r o ,  and c o n s e q u e n t l y ,  t h e s e  equa t ions  can  b e  m e t  only  f o r  ~ = c o n s t . *  S ince  (20) and (21) a r e  
obeyed  b y  the  g r a d i e n t  f r e e  f low ( d p / d x  = O) if ~?/cr = c o n s t  and P r  t = P r  t = 1, t hen  f low at a low s p e e d  wi l l  
c o r r e s p o n d i n g l y  a l s o  h a v e  no  g r a d i e n t  (dp/clx = 0), and ana logous  r e s u l t s  a r e  ob ta ined  if a t  the  wal l  we have  

s t r o n g  i n j ec t i ons  such tha t  q)w > O, (3mi/Oy) w = (3h/Sy) w = O. 

This shows that the low-speed and high-speed flows have similar distributions in the current functions, 

projections of the velocity on the x axis, total enthalpy, and concentration. The last means, in particular, 

that the dimensionless enthalpy at the wall is the same in corresponding sections, i.e., 

~lef (x) = her'(x) , (22) 

w h e r e  

~f (x )  -~ G~(~176  ~nd U~f(x)-= fie(oo)---~(~) 
h~o (~ )  - -  hw~ (xo) 4 (~)  - -  G~ (Xo) 

r e p r e s e n t  the  e f f e c t i v e n e s s  of f R m  coo l ing  of t h e  wa l t  [4, 6], wh i l e  x 0 and x 0 a r e  r e s p e c t i v e l y  t h e  i n i t i a l  

s e c t i o n s  in which  t h e  p r o f i l e s  of t h e s e  quan t i t i e s  a r e  s i m i l a r .  

The  edges  of t he  s l i t  f o r  p o r o u s  s t r i p  in f r o n t  of t he  a d i a b a t i c  wal l  ( F i g .  1) def ine  t he  s i m i l a r  s e c t i o n s  
and one can  a lways  s t a t e  a c u r r e n t  l i n e  p a s s i n g  t h r o u g h  t h e s e  e d g e s ,  so  (r should  be  de f ined  by  t h e  r a t i o  of 
t h e  m a s s  f low r a t e s  of t h e  i n j e c t e d  gas  in t h e  t o w - s p e e d  and h i g h - s p e e d  e a s e s .  Then we c a n  f ind  t h e  v a l u e s  
of t h e  s c a l e  func t ions  of (5) on the  t r a n s f o r m a t i o n  f o r  an a d i a b a t i c  p l a t e  in c o r r e s p o n d e n c e  wi th  (6), (14), and 

(17) a s  f o l l ows  : 

G P~ ~ (Sa) 

H = ~ (c6) - -  h ~  (x 0) mi~ (oc) - -  mi~ (;co) 
h ~ ( o o ) _ G ~ ( x o ) ,  M =  mie (oo) - -  mi~ (x o) 

if  d p / d x  = 0 and P r  t = Sct  = P--rt = Sc--t -- 1. H e r e  a l l  t h e  s c a l e  f unc t i ons ,  a p a r t  f r o m  ~, a r e  c o n s t a n t s ,  wh i l e  
t he  r e l a t i o n  be tween  the  c o o r d i n a t e s  at  t h e  c o r r e s p o n d i n g  po in t s  is  found f r o m  (5a) as  

dx p~ (x) t~w (x) _ _  = q ~ ]  
dx Pw (x) P'w (x) 

and 

O~g = pu t . Fl~__, (23) 
Og put M~ 

We w r i t e  t h e  s e c o n d  equa t ion  in  (7) v i a  (Sa) f o r  t h e  c ond i t i ons  a t  t h e  w a l l :  

v~, = v-- B! . c~__~_~ fi~ ~ ,  ( Og) (7a) ~ p " T  -&~," 

Thi s  equa t ion  is a lways  m e t  f o r  an i m p e r m e a b l e  wal l  q)w = Uw = v w = 0; if the wa l l  has  s t r o n g  i n j e c t i o n  at  
a c o n s t a n t  t e m p e r a t u r e  (~!,w ~ 0, hOT = cons t ) ,  t hen  t h e  d e r i v a t i v e  on the  r i g h t  in (7a) i s  z e r o ,  wh i l e  t h e  e q u a -  

t ion  b e c o m e s  

(v~/uw) = (vw/ue) o~,~, (7b) 

(vwiu~) (Gi~) .~ 

This  shows t ha t  the  cond i t i on  a P w / ~ w  = 1 i s  c o m p a t i b l e  wi th  the  cond i t ion  f o r  s i m i l a r i t y  in t he  v e l o c i t y  d i s -  
t r i b u t i o n s  (u and v) n e a r  the  wal l  f o r  s t r o n g  i n j e c t i o n .  In wha t  fo l lows  we  a s s u m e  tha t  

O'P~a 1 ~ 2  = [ arid (V2/u~) ~ (V~/Ue) = 1. (7c)- 
~ R% ( vd@ (v.dut) 

*In [2] the discussion concerned the case r = vat for m t = eonst and h ~ = const. 
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Fig.  1. Scheme of secondary  gas supply to the main s t r eam:  
a) tangential injection; b) injection at an angle; c) injection 
normal  to the surface.  

We integrate the first equation in (23) to ralate the corresponding sections in the low-speed case 
(x = const) and the high-speed case (x = const), at which we have equality of the effective film cooling rates 
as defined by (22). Equations (5a) and (7c) in principle solve the problem for the injection of a gaseous 
coolant if these equations are supplemented with ones defining the physical properties of the gas mixture, 

for  example, those of [5]; 
_ 1 

i 

Fi = AiT~'5/(T + Bi) (Sutherland's formula) (25) 
and 

Pi : P~ (P, T) (equation of state). (26) 

As art example we consider  an air  flow with injected cooling air .  Here we need t r ans fo rm only the 
equations for  continuity, motion, mad energy,  while in place of (24) we use the following equation [5]: 

o~ _ ( p ] o , ~  h '-o,~,~ h - o , ~  

If the low-speed flow is also of air  q t ransformation)  then we use (5a), (7c), (23), and (27) to get 

x - - x o  - - - -  ~ ( 1-- ~ |  . (28) s (h~/ho)o,343 . x - -  x0 k k - - i  ~)\~ x - -  x 0 
s k + l  s ' 

which implies that the per formance  in the high-speed flow will be higher than that in the low-speed one for 
the same  dimensionless distance f rom the injection point. Equation (28) demonst ra tes  the effect of the com-  
press ib i l i ty  on the relation between the related sections in the two flows. 

If the low-speed flow is that of a liquid with constant physical properties (i transformation), then we 
use (5a), (7c), (23), and (27) to get 

(x/s) 

(xo/s) 

and (27) and the approximating equation for  the per formance  of the On the other hand, f rom ( 1 0 ) ,  ( 2 3 ) ,  (25 ) ,  
f i lm cooling [6] 

(30) 
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Fig. 2. Comparison of experimental and calculated 
values of the effectiveness of fi lm cooling for  a fiat 
plate behind a tangential slot: a) experiment No. 11: 
u 2 = 141 m/see ,  u e = 140 m / s e e ,  T20 = 345~ TOe 
= 967~ Sef = 5.5 ram; b) experiment NO. 5: u 2 = 140 
m / s e e ,  u e = 134 m/see ,  T O = 320~ T O = 952~ Sef 
= 3.2; 1) experimental data [8]; 2) experimental data 
recalcula ted by means of (22), (29); 3) theoret ical  
curves  [9]. 

we get relat ionships for  the converse :  

x--xn='.= (l§ V(Eu/~-e) (l_k_..~_] _k-1  ~,~) 

. 1 k - - I  s [C_B/hO (&/4) - zg)] 

I y l - t ( x )  V~-t(~=,) + ~ C~B--hoo(oo) 
x I ~-~) t(*:\=,) ~ "  CvB +hoo(oo) 

[ 1§ 1/l--t(~) l--V-l--t (;,,=,)]} (31) 

and 

X - - X  n 1~ ,_k_, 
kq-1 )~ = 1 N -k 0,343 

F [ r( n) 1 X o, (31a) 

where f(x) = [1-hwa(X0)/he]~?ef is a function of the coordinate x, and x n is the coordinate corresponding to 
the x n at which (30) begins to apply; also, N = 1 / n - 0 . 3 4 3  is an integer g rea te r  than zero  and C~_ 1 is a 
binomial coefficient.  We wish to know the per formance  in fi lm cooling with a liquid as a function of the 
distance f rom the injection point, which we approximate via par ts  of curves  of the fo rm of (30) with powers 
n(n _< 1), and then we use (31) and (31a) to define the coordinates of the low-speed flow in relat ion to the 
coordinates of the high-speed one success ive ly  in accordance with the selected par ts .  H e r e u e / U  e and H 
should be chosen, while ~ and ~/should be obtained by calculation.  

Equation (29) differs f rom (28) in incorporat ing not only the effects of compress ib i l i ty  but those also 
of nonisothermal conditions on the per formance;  the effects of the la t ter  can be seen by putting Xe and k2 
equal to zero,  when (29) shows that d i rect ly  at the point of injection Pw#w/P2P2 ~ 1, and the dimensionless 
coordinates along the absc issa  axis a re  vir tual ly  the same for  the low-speed and high-speed cases .  Fa r  
f rom the point of injection we have PwPw/P2br ~ poue/P2P2 grea te r  or less  than unity in dependence on 
whether the injected gas is hotter  or colder .  In the f i rs t  case ,  the per formance  decreases ,  while in the 
second case  it increases  relat ive to the per formance  of a flow of liquid with constant physical proper t ies .  

Pe t rov  [7] has given experimental  resu l t s  on the per formance  of fi lm cooling beyond a tangential slot 
on injecting nitrogen into an air  flow along a planar plate when the veloci ty is supersonic (k e = 1.48). His 
experimental resul ts  were  in almost complete agreement  with the efficiency as calculated for low-speed 
flows and used in such a way that u = u and Re 2 ~ Re 2. This agrees completely  with our deductions, since,  
in this case ,  k2 <- 0.5, and f rom (28) we get 0.985 _ (x- x0 /s ) / (x-  x0/s) _< 1. 

Borodachev [8] has given experimental resul ts  on the per formance  of film cooling behind a tangential 
slot when injecting air  into an air  flow (u 2 ~ Ue), where k e and k2 did not exceed 0.5, while the t empera tu re  
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change in the boundary layer  was �9 310 ~ The rat io O~4Zw/P2/~2 was deduced f rom the t empera tu re  of the 
adiabatic walls, and the integral on the r ight in (29) was calculated to re la te  the coordinates along the 
absc i ssa  axis for  the low-speed and high-speed cases .  F igure  2 shows the observed per formance  given in 
[8], and also the experimental  resul ts  converted via (22) and (29), together  with the theoret ical  per formance  
f rom the data of [9], the theoret ical  calculation incorporat ing the assumption that dynamic boundary layers  
with injected mater ia l  a re  closed at the exit f rom the slot, while the nomimal  origin of the dynamic boundary 
layer  at the wall is taken re la t ive  to the slot position such that the dimensionless cur ren t  function ~wbl 
= ~wbl/~ is equal to ~wbl = 0.5Re2, thus charac te r iz ing  the flow in the dynamic boundary layer  near  the wall 
at the slot section. It is c lea r  f rom the resul ts  that the nonisothermal  boundary layer  in this case  has little 
effect on the per formance  of the fi lm cooling, and the la t ter  can be calculated quite accura te ly  via the equa- 
tions for  the per formance  of film cooling with a quasi isothermal  flow [10]. 

The equation t ransformat ion  method of [1-3] can be used to take into account compress ib i l i ty  and 
nonisothermal conditions as regards  the per formance  of film cooling. These effects can be neglected over 
a comparat ively  wide range in velocity and tempera tu re  if one retains cer ta in  definite conditions for  com-  
paring the high-speed and low-speed flows. 

x, y 

S 

p 

~wbl 
U~ V 

P 
T 
h 
Cp 
k 
k 

mi 

Mi 
M 2 , 

T 

q 
cr,~, ~, H, M 

o 
6 

9u h ~ __ h o 

l o dy ,  
(P ~ OeUe h e - -  hw 

5 O u m i e - -  m i 
C 
JO OeUe m i e - -  rniw 

Re 2 = M2/g 2 
Pr  
Sc 
A i, B i, C n, N, n 

N O T A T I O N  

are  rec tangular  coordinates of which the absc issa  coincides with the surface  of the 
flat plate and the direct ion of the undisturbed flow; 

is a charac te r i s t i c  dimension (height of slot, length o~ porous section); 
is the density; 
is the viscosi ty;  
is the flow function; 
is the dimensionless  flow function; 
a re  the project ions of the velocity vector  on the x and y axes, respect ive ly ;  
is the p r e s su re ;  
is the t empera tu re ;  
~s the enthalpy; 
is the specific heat at constant p re s su re ;  
~s the isoentropic component 
~s the velocity coefficient,  the ra t io  of the flow velocity to the cr i t ical  velocity; 
~s the mass  flow density of the i- th component;  
is the molecular  weight of the i- th component; 
~s the mass  flow ra te  of gas per  unit width of flow; 
~s the shear  s t r e s s ;  
is the heat flux density; 
a re  sca le  functions; 

a re  respec t ive ly  the thickness,  thickness of displacement;  

is the momentum thickness; 

is the energy thickness; 

- -  dy is the mass  thickness of the [-th component of the boundary layer;  

is the Reynolds number;  
is the Prandtl  number;  
is the Schmidt number ;  
a re  constants .  

Subscripts 

0 denotes total pa r ame te r s ;  
e denotes undisturbed flow; 
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2 
w 
wa 
i 

ef 
wbl 

denotes injected flow; 
denotes wall; 
denotes adiabatic wall; 
denotes the i-th component of the gas mixture; 
denotes "effective; 
denotes well boundary layer.  
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